测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2075-2085.doi: 10.11947/j. AGCS.2024.20230582.

• 地图学与地理信息 • 上一篇    

图Transformer支持下的河网模式识别

余华飞1,2(), 邱天奇3, 周哲1,2, 龚冲亚1,2, 肖天元1,2, 杨敏1,2, 艾廷华1,2()   

  1. 1.武汉大学资源与环境科学学院,湖北 武汉 430079
    2.地理信息系统教育部重点实验室,湖北 武汉 430079
    3.广州市城市规划勘测设计研究院有限公司,广东 广州 510060
  • 收稿日期:2023-12-20 发布日期:2024-12-13
  • 通讯作者: 艾廷华 E-mail:huafeiyu@whu.edu.cn;tinghuaai@whu.edu.cn
  • 作者简介:余华飞(1993—),男,博士后,研究方向为地图数据智能处理。 E-mail:huafeiyu@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42401545)

Drainage pattern recognition supported by graph Transformer

Huafei YU1,2(), Tianqi QIU3, Zhe ZHOU1,2, Chongya GONG1,2, Tianyuan XIAO1,2, Min YANG1,2, Tinghua AI1,2()   

  1. 1.School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
    2.Key Laboratory of Geographic Information System, Ministry of Education, Wuhan 430079, China
    3.Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd., Guangzhou 510060, China
  • Received:2023-12-20 Published:2024-12-13
  • Contact: Tinghua AI E-mail:huafeiyu@whu.edu.cn;tinghuaai@whu.edu.cn
  • About author:YU Huafei (1993—), male, postdoctor, majors in intelligent processing of map data. E-mail: huafeiyu@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42401545)

摘要:

河网模式识别在地形地貌分析、地质矿物探测、河网数据多尺度变换等研究中发挥重要作用。为克服基于形态特征与几何特征的空间统计方法的稳健性不足问题,引进图卷积神经网络是当前的主要手段,然而图卷积方法仅关注河网形态的局部特征,仍未实现从全局视角出发的河网模式识别决策。因此,本文提出了一种图Transformer支持下的河网模式识别方法。该方法在河网几何形态知识支持下利用对偶图思想构建河网图结构,进一步通过GraphSAGE设计局部学习模块及Transformer设计全局学习模块。试验结果表明,相比已有的1st-ChebNet和GraphSAGE方法,本文方法能够结合局部河段组合特征与全局河网形态特征,做出准确的河网模式识别决策,识别精度可达94%。这为实现智能化河网模式识别提供了一种技术途径。

关键词: 河网模式识别, 几何形态知识, GraphSAGE, Transformer

Abstract:

Drainage patterns recognition is essential for analyzing terrain and geomorphology, exploring geological minerals, and transforming river network data across various scales. However, traditional spatial statistical methods based on morphological and geometric features are not robust enough. To overcome this deficiency, graph convolutional methods have emerged as a popular solution. Nevertheless, these methods often focus narrowly on local features, disregarding the crucial global perspective necessary for comprehensive analysis. To address this issue, our study proposes a drainage pattern recognition method supported by graph Transformer. This method incorporates geometric knowledge by constructing river network graph structures using dual graphs. It integrates a GraphSAGE-based local learning module and a Transformer-based global learning module, training the graph Transformer model. Experimental results demonstrate that our method achieves 94% accuracy in accurately recognizing drainage patterns by combining local segment composite features and global river network morphology features. This outperforms the 1st-ChebNet and GraphSAGE methods, presenting a promising approach for intelligent drainage pattern recognition.

Key words: drainage pattern recognition, geometric knowledge, GraphSAGE, Transformer

中图分类号: